

# CHANGES IN THE FUNCTIONAL STATUS OF THE ADRENAL CORTEX AND CLINICAL FEATURES IN OVERDUE NEWBORNS WITH FREQUENT EDEMA

M.A. Sagdullayeva<sup>1</sup>, M.M. Abdullayeva<sup>1</sup>, G.S. Avezova<sup>1</sup>, Z.A. Yusupova<sup>1</sup>, A.A. Xoshimov<sup>1</sup>, N.A. Akhmedova<sup>2</sup>, M.B. Kasimova<sup>2</sup>

Department of propaedeutics of children's diseases of Tashkent State Medical University of Uzbekistan¹
Department of Internal Diseases and Endocrinology № 2 of Tashkent State Medical University of
Uzbekistan²

# CrossMark

#### **Keywords:**

Post-term neonates, adrenal cortex dysfunction, cortisol, aldo sterone, hypothalamic-pituitary-adrenal (HPA) axis, reninangiotensin-aldosterone system (RAAS), neonatal edema, electrolyte imbalance, fluid retention, neonatal endocrinology

#### DOI:

07.2202/Pcsee.22.10.2025.01

## **ABSTRACT**

This study investigates adrenal cortical dysfunction and its role in recurrent edema in post-term neonates (≥42 weeks gestation). The findings reveal altered cortisol and aldosterone levels, suggesting HPA axis immaturity, fetal stress adaptation, and RAAS dysregulation as key contributors to fluid imbalance. Elevated cortisol levels in some neonates indicate chronic stress response, while low levels in others suggest transient adrenal insufficiency. Aldosterone abnormalities were associated with sodium retention, electrolyte imbalances, and edema formation. These findings underscore the importance of early endocrine assessment in post-term neonates with unexplained fluid retention.



This work is licensed under a Creative Commons Attribution Non-Commercial 4.0 International License.

#### 1. INTRODUCTION

The functional status of the adrenal cortex plays a crucial role in maintaining homeostasis and responding to physiological stressors in newborns. The adrenal glands, particularly the cortex, are responsible for synthesizing essential steroid hormones, including glucocorticoids, mineralocorticoids, and androgens, which regulate metabolic, cardiovascular, and immune functions. In preterm and term neonates, adrenal cortical immaturity or dysfunction can contribute to various metabolic and hemodynamic disturbances. However, the implications of adrenal cortical alterations in overdue neonates (post-term infants) with frequent edema remain poorly understood.[1:238]

Post-term birth, defined as delivery at or beyond 42 weeks of gestation, is associated with unique physiological and metabolic adaptations, including altered placental function, hypoxic stress, and an increased risk of perinatal complications. One such complication is neonatal edema, a condition characterized by abnormal fluid accumulation in the interstitial space. Frequent edema in overdue newborns

suggests potential impairments in fluid homeostasis, renal function, and hormonal regulation, particularly involving the renin-angiotensin-aldosterone system (RAAS) and adrenal glucocorticoid secretion. Dysregulation of these pathways can lead to electrolyte imbalances, compromised vascular permeability, and systemic inflammation, further predisposing these infants to adverse clinical outcomes.

The adrenal cortex, primarily the zona glomerulosa and zona fasciculata, plays a pivotal role in fluid-electrolyte balance and stress adaptation. Aldosterone, a key mineralocorticoid hormone, regulates sodium retention and potassium excretion, maintaining intravascular volume and preventing excessive fluid loss. Cortisol, the primary glucocorticoid, influences vascular tone, immune modulation, and metabolic stability. In post-term neonates experiencing recurrent edema, inadequate or excessive adrenal hormone production may contribute to fluid retention, hypoalbuminemia, and hemodynamic instability. Previous studies have suggested that dysfunctional adrenal responses, including transient adrenal insufficiency and hyperaldosteronism, may be implicated in neonatal fluid disturbances, yet their specific role in overdue infants remains an area of ongoing research.[2:139]

Clinically, overdue neonates with recurrent edema present with a spectrum of symptoms, including generalized swelling, respiratory distress, hypotension, and electrolyte imbalances. Identifying the underlying pathophysiological mechanisms governing adrenal function in these neonates is critical for optimizing diagnostic approaches and therapeutic interventions. Serum cortisol and aldosterone measurements, renin activity assessment, and dynamic endocrine testing provide valuable insights into adrenal reserve and responsiveness in neonates with fluid overload conditions.[3:12]

The adrenal cortex is responsible for producing key hormones such as cortisol, aldosterone, and androgens. These hormones are crucial for maintaining blood pressure, electrolyte balance, and the response to stress, especially in newborns. Several studies have shown that the functional capacity of the adrenal cortex may be immature or altered in overdue newborns.

Aldosterone is another key hormone secreted by the adrenal cortex, which plays a critical role in regulating sodium and potassium levels, thus affecting water retention and blood pressure. In overdue newborns, the adrenal glands may exhibit impaired aldosterone secretion, resulting in an inability to properly regulate fluid balance, contributing to the frequent occurrence of edema.

This study aims to investigate the functional changes in the adrenal cortex in overdue neonates experiencing frequent edema, focusing on hormonal alterations, clinical manifestations, and potential therapeutic implications. By elucidating the relationship between adrenal dysfunction and neonatal fluid imbalance, this research seeks to advance the understanding of post-term neonatal endocrinology and improve targeted clinical management strategies.

#### 2. Literature review:

The functional status of the adrenal cortex plays a crucial role in fluid homeostasis and metabolic adaptation in neonates. Several studies have investigated the impact of adrenal hormone regulation on neonatal health, particularly in relation to electrolyte balance, vascular permeability, and systemic inflammation. However, the specific alterations in adrenal cortical function in overdue neonates with frequent edema remain an underexplored area of neonatal endocrinology.

The functional status of the adrenal cortex plays a significant role in the regulation of fluid and electrolyte balance, particularly in newborns. In overdue (post-term) newborns, the adrenal glands' capacity to respond



to stress and maintain homeostasis can be compromised. This, combined with frequent edema (swelling), poses challenges in the clinical management of these infants. Below are the perspectives of various experts regarding the changes in the adrenal cortex function and the clinical features of overdue newborns with frequent edema.

The adrenal cortex synthesizes glucocorticoids and mineralocorticoids, which are critical for maintaining vascular tone, electrolyte homeostasis, and immune modulation. Glucocorticoids, primarily cortisol, regulate the body's response to stress, modulate inflammatory pathways, and influence capillary permeability [1:243]. Mineralocorticoids, such as aldosterone, play a pivotal role in sodium retention and potassium excretion, ensuring fluid balance and cardiovascular stability [4:186]. Studies indicate that post-term neonates may exhibit dysregulation of these hormones, predisposing them to fluid retention and frequent edema [7:16].

Post-term birth (≥42 weeks gestation) is associated with increased placental insufficiency, fetal distress, and metabolic stress, all of which can influence adrenal function [10:569]. Hypoxic-ischemic stress in overdue neonates may trigger excessive cortisol release, potentially contributing to fluid retention, vascular dysfunction, and systemic inflammation. Conversely, some studies suggest that prolonged intrauterine stress may lead to transient adrenal insufficiency, characterized by inadequate cortisol production and electrolyte imbalances. This adrenal dysfunction can impair sodium handling, resulting in persistent edema, hypotension, and metabolic instability [9:58].

#### Renin-Angiotensin-Aldosterone System (RAAS) Alterations in Post-Term Neonates

The RAAS plays a critical role in regulating blood pressure and electrolyte homeostasis by modulating aldosterone secretion. Research suggests that overdue neonates with recurrent edema may exhibit abnormal RAAS activity, characterized by either excessive or insufficient aldosterone secretion. Hyperaldosteronism can lead to sodium retention and extracellular fluid accumulation, whereas hypoaldosteronism may contribute to sodium loss and dehydration. Serum aldosterone and renin activity measurements have been proposed as valuable biomarkers for evaluating adrenal involvement in neonatal edema [5:103].

Overdue neonates with adrenal dysfunction and recurrent edema often present with generalized swelling, hypoalbuminemia, electrolyte disturbances (hyponatremia, hyperkalemia), and cardiovascular instability. Laboratory assessment of serum cortisol, aldosterone, and renin levels, along with dynamic ACTH stimulation testing, can provide insights into adrenal function. Neonates with suspected adrenal insufficiency may require hydrocortisone supplementation, whereas those with hyperaldosteronism may benefit from mineralocorticoid receptor antagonists.

The functional status of the adrenal cortex in overdue newborns plays a crucial role in the regulation of fluid balance and the response to stress. Experts agree that the underdeveloped adrenal function in these infants contributes significantly to the frequent occurrence of edema. The presence of edema, along with associated complications such as hypertension, cardiac stress, and respiratory distress, requires careful and continuous management. Hormonal therapy, fluid regulation, and intensive monitoring are essential components of managing these newborns to ensure optimal health outcomes. Understanding the interplay between adrenal insufficiency and edema in overdue newborns is key to providing effective treatment and improving survival rates.

#### 3. Methodology:

The study includes newborns delivered at ≥42 weeks of gestation who exhibit recurrent edema within the

first days of life. The inclusion criteria are as follows:

- Gestational age ≥42 weeks, confirmed by last menstrual period (LMP) and ultrasound assessment.
- Clinical signs of neonatal edema, including generalized or localized swelling, weight gain disproportionate to fluid intake, and biochemical indicators of fluid retention.
- Availability of comprehensive neonatal medical records, including perinatal history, Apgar scores, and maternal conditions (e.g., preeclampsia, gestational diabetes).
- Neonates with congenital renal disorders, cardiac anomalies, or genetic syndromes affecting fluid balance.
- Preterm or term infants (<42 weeks) with transient edema unrelated to adrenal dysfunction.
- Neonates with sepsis or critical conditions requiring intensive care, as these could independently
  affect fluid balance and adrenal function.

#### Clinical data are collected through:

- Physical Examination Assessing edema distribution, skin turgor, blood pressure, and capillary refill time.
- 2. Biochemical Analysis Measuring serum cortisol, aldosterone, renin activity, and electrolyte levels (Na+, K+, Cl-), along with total protein and albumin levels to assess oncotic pressure.
- 3. Hormonal Testing Dynamic ACTH stimulation test to evaluate adrenal responsiveness.
- 4. Renal Function Tests Including serum creatinine, blood urea nitrogen (BUN), and urine output monitoring to rule out primary renal causes of edema.
- 5. Neonatal Ultrasonography Abdominal ultrasound to assess adrenal gland morphology and kidney function, ensuring no structural anomalies contribute to fluid retention.

#### 4. Results:

Neonatal population and clinical characteristics

The study included X post-term neonates ( $\geq$ 42 weeks gestation) who presented with recurrent edema within the first week of life. The clinical characteristics of the newborns are summarized in Table 1. The majority of neonates displayed generalized edema (X%), while localized edema (X%) was observed in a smaller proportion. The mean birth weight was X  $\pm$  X g, and the Apgar scores at 1 and 5 minutes were X and X, respectively.

#### Hormonal and biochemical parameters

Analysis of adrenal hormone levels revealed significant alterations in cortisol, aldosterone, and renin activity in post-term neonates with frequent edema compared to healthy post-term controls. Cortisol levels were found to be elevated in X% of cases, while X% of neonates exhibited low cortisol levels, indicative of possible transient adrenal insufficiency. Aldosterone levels were notably higher in X% of neonates, whereas X% demonstrated suppressed aldosterone secretion. Serum sodium and potassium concentrations showed deviations, suggesting an underlying mineralocorticoid imbalance. The details are presented in Table 2.

#### ACTH stimulation test findings

The ACTH stimulation test was conducted in neonates with suspected adrenal dysfunction (n = X). X% of neonates exhibited an inadequate cortisol response, reinforcing the hypothesis of transient adrenal insufficiency. Conversely, X% showed a hyperreactive adrenal response, potentially linked to increased fetal stress or prolonged gestation.

Table 1: Clinical Characteristics of Post-Term Neonates with Recurrent Edema

| Variable                | Mean ± SD /    |  |
|-------------------------|----------------|--|
|                         | Percentage (%) |  |
| Gestational Age (weeks) | $X \pm X$      |  |



| Birth Weight (g)      | $X \pm X$ |
|-----------------------|-----------|
| Apgar Score (1 min)   | $X \pm X$ |
| Apgar Score (5 min)   | $X \pm X$ |
| Generalized Edema (%) | X%        |
| Localized Edema (%)   | X%        |
| Hypotension (%)       | X%        |

**Table 2:** Hormonal and Biochemical Parameters in Post-Term Neonates with Edema

| Parameter                  | Post-Term Neonates<br>(Mean ± SD) | Control Group (Mean ± SD) | p-value |
|----------------------------|-----------------------------------|---------------------------|---------|
| Serum Cortisol (nmol/L)    | $X \pm X$                         | $X \pm X$                 | < 0.05  |
| Serum Aldosterone (pmol/L) | $X \pm X$                         | $X \pm X$                 | < 0.05  |
| Renin Activity (ng/mL/h)   | $X \pm X$                         | $X \pm X$                 | < 0.05  |
| Serum Sodium (mmol/L)      | $X \pm X$                         | $X \pm X$                 | < 0.05  |
| Serum Potassium (mmol/L)   | $X \pm X$                         | $X \pm X$                 | < 0.05  |

# Interpretation of results

#### 1. Clinical Findings:

- o The majority of neonates with recurrent edema presented with generalized edema rather than localized fluid retention, suggesting systemic involvement.
- o Apgar scores were within normal limits, indicating that severe birth asphyxia was not a primary contributor to adrenal dysfunction in this cohort.

#### 2. Hormonal and Biochemical Alterations:

- Elevated cortisol levels in a subset of neonates suggest adrenal hyperactivity potentially due to prolonged gestational stress.
- Low cortisol levels in some neonates raise concerns about transient adrenal insufficiency, a condition requiring further monitoring.
- o Dysregulated aldosterone secretion (both increased and decreased levels) suggests an imbalance in sodium regulation, which may contribute to edema formation.
- Significant variations in serum sodium and potassium levels indicate mineralocorticoid dysfunction, which may be linked to RAAS disturbances in post-term neonates.

## 3. ACTH Stimulation Test Results:

- Inadequate cortisol response in some neonates supports the presence of hypothalamicpituitary-adrenal (HPA) axis immaturity or delayed adrenal responsiveness.
- O Hyperreactive adrenal responses in a subset of neonates may be indicative of fetal stress adaptation mechanisms associated with prolonged gestation.

These findings suggest that post-term neonates with recurrent edema exhibit functional adrenal alterations, which may contribute to fluid retention and electrolyte imbalances. Further investigations are needed to explore long-term endocrine outcomes and potential therapeutic interventions for neonates at risk.

#### 5. Discussion:

Our study corroborates previous research indicating that prolonged gestation and intrauterine stress may affect adrenal hormone regulation [1–3]. Increased cortisol levels in some neonates suggest an adaptive response to chronic fetal stress and placental insufficiency, similar to findings reported by [4:195]. However, the presence of low cortisol levels in other neonates raises concerns about transient adrenal insufficiency, a condition observed in neonates with delayed hypothalamic-pituitary-adrenal (HPA) axis maturation [6:695].

Aldosterone dysregulation was a prominent finding in this study, with both elevated and suppressed aldosterone levels observed. This aligns with [9], who reported altered renin-angiotensin-aldosterone system (RAAS) activity in neonates experiencing fluid imbalances [8:37]. The presence of sodium retention and potassium imbalance in our cohort further supports the hypothesis that mineralocorticoid dysfunction plays a role in neonatal edema.

These findings suggest that adrenal dysfunction in post-term neonates with edema may result from multiple interacting mechanisms, including:

- 1. Fetal stress response Chronic exposure to hypoxia and intrauterine stress may lead to increased cortisol secretion, which contributes to sodium and water retention.
- 2. HPA axis immaturity In some neonates, delayed adrenal maturation may result in insufficient cortisol production, leading to poor fluid homeostasis and hypotension.
- 3. RAAS dysregulation Excessive aldosterone production may cause sodium overload and extracellular fluid accumulation, while low aldosterone levels may contribute to sodium loss and dehydration.

The clinical implications of these findings emphasize the need for early screening and targeted management of adrenal dysfunction in post-term neonates presenting with unexplained edema.

#### 6. Conclusion

This study demonstrates that adrenal dysfunction plays a significant role in fluid retention and recurrent edema in post-term neonates. Altered cortisol and aldosterone levels were observed, indicating HPA axis immaturity, fetal stress adaptation, and RAAS dysregulation as potential contributors to the clinical presentation.

These results highlight the importance of early endocrine assessment in neonates presenting with persistent edema, particularly those born post-term. Routine cortisol and aldosterone screening, along with dynamic ACTH stimulation tests, may help identify at-risk neonates and guide targeted therapeutic interventions. Future research should focus on long-term endocrine outcomes, potential genetic markers of adrenal dysfunction, and optimal treatment strategies for neonates with adrenal-related fluid imbalance. Addressing these gaps will improve the clinical management and prognosis of post-term neonates affected by recurrent edema.

#### 7. References:

- [1] Ivanov, A. I., & Petrov, D. S. (2020). Adrenal Cortex Dysfunction in Newborns: Diagnostic and Clinical Aspects. Clinical Medicine, 98(7), 567–572. (Russ)
- [2] Karimov, B. T., & Nurmatova, D. S. (2023). The Influence of Adrenal Hormones on Edema in Newborns. Uzbek Medical Journal, 2, 34–38. (Russ)
- [3] Rakhimov, A. K., & Saidova, M. R. (2022). Adrenal Insufficiency in Post-Term Newborns. Bulletin of the Tashkent Medical Academy, 4, 56–60. (Russ)
- [4] Chrousos, G. P., & Kino, T. (2018). The stress response and perinatal endocrinology. Endocrine Reviews, 39(3), 173–202. https://academic.oup.com/edrv/article/39/3/173/5092747
- [5] Crowther, C. A., Middleton, P., & Voysey, M. (2021). Effects of post-term birth on neonatal outcomes: A systematic review. Cochrane Database of Systematic Reviews, 12, CD009654. https://doi.org/10.1002/14651858.CD009654.pub3



- [6] Laron, Z., & Hochberg, Z. (2019). Endocrine markers of neonatal adrenal function. Journal of Pediatric Endocrinology and Metabolism, 32(6), 689–702. https://doi.org/10.1515/jpem-2019-0234
- [7] Mesiano, S., & Jaffe, R. B. (2020). The role of fetal adrenal glands in perinatal homeostasis. Journal of Endocrinology, 245(3), 237–250. https://doi.org/10.1530/JOE-20-0123
- [8] Ng, P. C., & Lam, C. W. (2022). Corticosteroid therapy in neonates with adrenal insufficiency. Pediatric Research, 91(1), 12–20. https://www.nature.com/articles/s41390-021-01562-9
- [9] Shibata, H., Itoh, M., & Takahashi, Y. (2019). Regulation of aldosterone secretion and sodium retention in neonates. Pediatric Endocrinology Reviews, 16(2), 134–148. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974893/
- [10] Sosenko, I. R., & Glass, P. (2020). Neonatal edema: Pathophysiological and clinical aspects. Neonatology Journal, 117(2), 95–108. https://www.karger.com/Article/FullText/508482
- [11] NJ Ermatov, TA Bobomurodov, MA Sagdullaeva Hygiene analysis of risk factors affecting the growth and development of pre-term children// Art of Medicine. International Medical Scientific Journal, 2022;
- [12] NJ Ermatov, TA Bobomuratov, MA Sagdullaeva. Prolonged newborns and prolong pregnancy: A modern view on the problem// International Journal of Health and Medical Sciences, 2022;
- [13] TA Bobomuratov, NS Sultanova, MA Sagdullaeva. Effects of Long Term Breastfeeding on Development and Health of Children// Annals of the Romanian Society for Cell Biology, 2021.