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ABSTRACT 
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 Solar energy is eco-friendly nature. To maximize its utilization, this paper 

presents a comparative performance evaluation of four advanced 

maximum power point tracking (MPPT) techniques for photovoltaic (PV) 

systems: ANFIS subtractive clustering, Interval Type-2 Fuzzy Logic 

(IT2FL), and Grey Wolf Optimization (GWO)-based MPPT. The 

proposed ANFIS approach leverages subtractive clustering (ANFIS-SC), 

which offers significant advantages over conventional grid partitioning, 

including adaptability to complex data structures, automatic identification 

of optimal cluster centers, and reduced computational complexity by 

focusing on high-density regions. The resulting Sugeno-type ANFIS-SC 

MPPT system employs a single rule and one membership function per 

input, achieving simplicity, fast dynamic response, and superior tracking 

precision compared to traditional P&O methods. To further benchmark 

performance, an IT2FL-based MPPT is implemented, leveraging its 

inherent robustness to system uncertainties, while the GWO-based MPPT 

is introduced for its exceptional global search capability and adaptability 

to PV system. The three techniques are rigorously compared in terms of 

power extraction efficiency, voltage stability, and current dynamics under 

varying irradiance and temperature conditions. Simulation results 

demonstrate that while all intelligent methods outperform conventional 

P&O. This study provides critical insights for selecting MPPT strategies 

based on operational priorities, paving the way for optimized PV system. 
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1. INTRODUCTION 

The distance from central power grids and the cost of infrastructure are primary obstacles to electrification 

in remote areas, where load demand is often too low to justify traditional grid expansion. Coupled with 

challenges like frequent power outages, grid instability, and environmental concerns (e.g., CO₂ emissions 

[1- 3], ozone depletion, and global warming), these limitations have intensified the need for decentralized 

network. 

 

Among renewables, PV energy stands out due to its minimal operating costs, pollution-free operation, and 

direct electricity generation capability. However, PV systems face significant challenges, including 

nonlinear power-output characteristics and dependence on environmental conditions [4- 8]. To maximize 

efficiency, MPPT is essential. Conventional MPPT methods offer simplicity but suffer from oscillations and 

slow convergence under dynamic conditions. 

 

Modern MPPT controllers typically integrate a DC-DC converter driven by advanced algorithms. Artificial 

Intelligence (AI) based approaches, such as ANFIS, IT2FL, and GWO have demonstrated superior 

performance, combining robustness, fast tracking, and adaptability to nonlinearities. This paper advances 

the field by proposing three advanced AI-MPPT techniques: 

 ANFIS with subtractive clustering, which eliminates the need for manual grid partitioning, reduces 

computational overhead, and improves adaptability to complex data patterns. 

 Interval Type-2 Fuzzy Logic (IT2FL), which enhances uncertainty handling in fluctuating 

irradiance/temperature conditions. 

 GWO-based MPPT is introduced for its exceptional global search capability and adaptability to PV 

system. 

The paper is organized as follows: Section 2 introduces the PV system modeling, while Section 3 details the 

MPPT methodologies, including the conventional Perturb & Observe (P&O) method, ANFIS-based 

subtractive clustering (ANFIS-SC), Grey Wolf Optimization (GWO), and Interval Type-2 Fuzzy Logic 

(IT2FL). Section 4 depicts the simulation results and a comparative performance analysis under 

environmental conditions. Finally, Section 5 concludes the study with key findings and insights. The results 

demonstrate that ANFIS-SC, GWO, and IT2FL consistently outperform P&O in terms of tracking 

efficiency, dynamic response, and PV power output. 

 

2. PV MODELING 

The solar system under consideration, seen in Figure 1, employs the PV system, whose electrical properties 

are listed in Table 1. 

 

 
Fig. 1. PV system. 

 

https://www.zdgx-pcsee-02588013.com/
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The single-diode model is a suitable compromise between simplicity and accuracy. A photocurrent source 

in parallel with a single nonlinear diode, a shunt resistor, and a series resistor are depicted in Figure 2. The 

photocurrent source is primarily determined by the amount of solar irradiation and the cell's operating 

temperature. These equations define the model of the PV cell: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 × [𝑒𝑥𝑝 (𝑞(𝑉+𝑅𝑠)

𝑘𝑐𝐴
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
    (1) 

𝐼 = [𝐼𝑠𝑐 + 𝐾1(𝑇𝐶 − 𝑇𝑟]𝜆 

 

Where, 

Iph: photocurrent current, 𝐼𝐷: diode current, I: output current from the cell, 𝐼𝑆ℎ: shunt resistor current, 𝐼𝑆: 

diode saturation current, 𝐾1: Boltzmann constant, 𝑞: electron charge, 𝑇𝑐: actual cell temperature, 𝑅𝑆ℎ: 

shunt resistance, and 𝐼𝑆𝐶: short-circuit current, 𝑇 : reference temperature, 𝜆: irradiance and 𝑅𝑆ℎ: series 

resistance, V and I are the output voltage and output current of the PV module respectively. 

 

 
Fig. 2. PV cell equivalent circuit 

 

Table 1. PV module electrical characteristics values 

Power maximum power point (Pmpp) W 200.143 

Voltage maximum power point (Vmpp) V 28.7 

Current maximum power point (Impp) A 7.61 

Open Circuit Voltage (Voc) V 32.9 

Short Circuit Current (Isc) A 8.21 

Number of cells connected in series 54 

Number of cells connected in parallel 1 

 

3. Methodology 

This study evaluates and compares four MPPT 

 

3.1. Perturb and Observe 

At the first step, the PV system is implemented via P&O MPPT [9-14] for collecting the dataset of PV 

voltage, PV current, and the duty cycle. The PV MPPT P&O is implemented according to the algorithm 

below: 
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Fig.3. Flowchart of P&O MPPT algorithm 

 

3.2. Adaptive Neuro‑Fuzzy Inference System 

ANFIS controller combines the strengths of artificial neural networks (ANN) and fuzzy logic control 

(FLC), making it highly effective for nonlinear systems such as PV modules. It offers fast response times 

and high efficiency, even under varying weather conditions. By leveraging ANN’s learning ability and 

FLC’s interpretability, ANFIS efficiently manages fluctuations in irradiance and temperature. 

 

3.2.1. Working principle of ANFIS 

The ANFIS model uses PV voltage and current as inputs. The ANN component helps optimize the fuzzy 

rule base and membership functions, creating an adaptive inference system. Through iterative learning, 

ANFIS fine-tunes nonlinear functions using a set of fuzzy rules [15- 23]. 

Fig. 5 illustrates the ANFIS control flow. For a two-input (x, y) and one-output system, the fuzzy rules can 

be expressed as: 

 

If x is A₁ and y is B₁, then 𝑓1 

𝑓1 = 𝑝1𝑥 + 𝑞1𝑥 + 𝑟1 

If x is A2 and y is B2 then, 𝑓2      (2) 

𝑓2 = 𝑝2𝑥 + 𝑞2𝑥 + 𝑟2 

And the output function is given by equation, 

𝑓 =
𝑤1𝑓1+𝑤2𝑓2

𝑤1+𝑤2
        (3) 

 

https://www.zdgx-pcsee-02588013.com/
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Fig. 4. Flow diagram of ANFIS 

 

3.2.2 Subtractive Clustering Algorithm 

Subtractive clustering treats each data point as a potential cluster center. The algorithm works as follows: 

 

A. Potential Calculation– Evaluate each point’s likelihood of being a cluster center based on nearby 

data density. 

B. First Cluster Selection– The point with the highest potential becomes the first cluster center. 

C. Neighbor Removal– Exclude points within a defined range (clusterInfluenceRange) of the selected 

center. 

D. Iterative Process– Repeat steps 2–3 for remaining points until all data falls within a cluster’s 

influence range. 

     Clustering Parameters 

      Squash Factor– Scales cluster influence range. Smaller values produce more, smaller clusters. 

      Acceptance Ratio– Minimum potential (relative to the first cluster) to accept a new center. Rejection 

Ratio– Maximum potential (relative to the first cluster) to reject a point as a center.  

 

3.3. Grey Wolf Optimizer 

Grey wolf optimization is an intelligent swarm technique developed by [24- 26], which mimics the 

leadership hierarchy of wolves well known for their group hunting. Grey wolves belong to the canid family 

and mostly prefer to live in packs. They have a strict dominant social hierarchy; the leader is a male or 

female, called Alpha (α). The alpha is primarily responsible for decision-making. The dominant wolf's 

orders must be followed by the pack. Betas (β) are subordinate wolves that assist the alpha in decision-

making. The beta is an advisor to alpha and organizer for the pack. The delta (δ) wolves have to submit to 

the alpha and beta, but they dominate the omega. There are different categories of delta-like Scouts, 

Sentinels, Elders, Hunters, Caretakers etc. The lowest-ranking gray wolf is Omega (ω) who must submit to 

all other dominant wolves. Fig. 5 describes the hunting techniques and social hierarchy of wolves. 
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Fig. 5. GWO strategy 

 

3.3.1. Algorithm steps 

The GWO algorithm is briefly described in the following steps: 

 Step 1: Reset GWO parameters such as search agents (Gs), design variable size (Gd), vectors a, A, C 

and maximum number of iterations. 

 𝐴 = 2𝑎⃗𝑟1 − 𝑎⃗       (4) 

 𝐶 = 2𝑟2       (5) 

The values of a


 are decreased linearly from 2 to 0 during the iterations. 

 Step 2: Generate random wolves based on pack size. Mathematically, these wolves can be 

expressed as, 

𝑊𝑜𝑙𝑣𝑒𝑠 = [

𝐺1
1 𝐺𝐺𝑑−1

1 𝐺𝐺𝑑

1

𝐺1
𝐺𝑠 𝐺𝐺𝑑−1

𝐺𝑠 𝐺𝐺𝑑

𝐺𝑠

]    (6) 

Where, Gij is the initial value of the ith pack of the ith wolves. 

 Step 3: Estimate the fitness value of each hunting agent. 

𝐷⃗⃗⃗ = |𝐶𝐺⃗𝑝(𝑡) − 𝐺⃗(𝑡)|      (7) 

𝐶(t+1)= 𝐺⃗𝑝(𝑡) − 𝐴𝐷⃗⃗⃗      (8) 

 Step 4: Recognize the best hunting (Gα), the second best hunting (Gβ) and the third best 

hunting (Gδ). 

𝐷⃗⃗⃗𝛼 = |𝐶1𝐺⃗𝛼 − 𝐺⃗|      (9) 

𝐷⃗⃗⃗𝛽 = |𝐶2𝐺⃗𝛽 − 𝐺⃗|      (10) 

𝐷⃗⃗⃗𝛿 = |𝐶3𝐺⃗𝛿 − 𝐺⃗|      (11) 

𝐷⃗⃗⃗1 = 𝐺⃗𝛼 − 𝐴1(𝐷⃗⃗⃗𝛼)      (12) 

𝐷⃗⃗⃗2 = 𝐺⃗𝛽 − 𝐴2(𝐷⃗⃗⃗𝛽)      (13) 

𝐷⃗⃗⃗3 = 𝐺⃗𝛿 − 𝐴3(𝐷⃗⃗⃗𝛿)      (14) 

https://www.zdgx-pcsee-02588013.com/
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 Step 5: Renew the current search agent location using the following equation: 

𝐺⃗ =
𝐺⃗1+𝐺⃗2+𝐺⃗3

3
       (15) 

 

3.4. Interval Type 2 Fuzzy Logic 

Zadeh developed fuzzy set theory [27- 29], an approach widely used. It has the ability to operate without 

requiring a precise mathematical model. The controllers based on fuzzy logic replicate human reasoning to 

make control decisions, converting linguistic instructions into precise numerical actions. The FLC has three 

stages: 

A. Fuzzification: Converting the crisp inputs into fuzzy membership values. 

B. Fuzzy Inference: Applying the rule base to map the fuzzy inputs to the fuzzy output. 

C. Defuzzification: Translating the fuzzy output to a crisp control output value. 

Type-2 fuzzy sets provide greater flexibility compared to type-1 sets (Fig. 6) by incorporating an additional 

degree of freedom in the fuzzy inference process (Fig. 7). This feature makes them particularly effective in 

environments with uncertainty and ambiguity, thereby enhancing system performance. 

 

 
Fig. 6. Fuzzy Type 1 

 

 
Fig. 7. Fuzzy Type 2 

 

The interval type-2 fuzzy logic controller, denoted as 𝑋̄, is defined by a type-2 membership function, 

𝜇𝑋̄(𝑥,𝑢), where 𝑥 ∈  𝑋 (𝑋 being the universe of discourse) and 𝑢 ∈  𝐽 x ⊆ [0,1], as described in [14]. 

𝑋̄ = ({(𝑥, 𝑢), 𝜇𝑥(𝑥, 𝑢)} | ∡𝑢 ∈  𝐽 ∈  [0, 1])     (16) 

The representation of  𝑋̄ set can also be given by[15]: 

𝑋̄ =  ∫ ∫
𝜇𝑋̄(𝑥,𝑢)

(𝑥,𝑢)𝑢 ∈ 𝐽𝑥 ∈ 𝑋
   𝐽 ∈  [0, 1]      (17) 

 

3.3.1. Footprint of Uncertainty 

FOU represents the aggregation of all primary membership functions. 

    𝐹𝑂𝑈(𝑋̄) = ⋃ 𝐽𝑥𝑥∈𝑋          (18) 

It is bounded by: 
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 Upper membership function (UMF): μX(𝑥). 

 Lower membership function (LMF): μX(𝑥). 

Type-2 Fuzzy Inference System (FIS) 

The IT2FL controller is composed of four basic elements (Fig. 8) 

a. Fuzzification 

Transform a precise input 𝑥′ into an IT2FS by computing its associated Upper and Lower Membership 

Functions (UMF and LMF), thereby capturing the uncertainty inherent in the membership grades. 

𝑋̄(𝑥′) = [μX(𝑥′), μX
(𝑥′)]      (19) 

b. Inference 

If 𝑥1 is 𝑋1 and 𝑥2 is 𝑋2, then y is (𝐶̄) 

The firing strength is determined by applying a t-norm operator, which aggregates the membership values 

of the antecedent conditions. 

𝐹𝑖 = [𝑓𝑖, 𝑓𝑖]        (20) 

Where, 

 𝑓𝑖 = 𝑡-norm (μ𝑋1
(𝑥1), μ𝑋2

(𝑥2))     (21) 

𝑓𝑖 = 𝑡-norm (μ𝑋1
(𝑥1), μ𝑋2

(𝑥2))      (22) 

c. Type Reduction 

IT2FS can be reduced to a T1FS through type-reduction techniques, such as the Karnik–Mendel (KM) 

algorithm, which is commonly used to compute the centroid of the IT2FS. 

The KM Algorithm calculates the switch points iteratively according to the equations below: 

𝑦𝐿 =
∑ 𝑥𝑖μ(𝑥𝑖)𝐿

𝑖=1 +∑ 𝑥𝑖μ(𝑥𝑖)𝑁
𝑖=𝐿+1

∑ μ(𝑥𝑖)𝐿
𝑖=1 +∑ μ(𝑥𝑖)𝑁

𝑖=𝐿+1

       (23) 

𝑦𝑟 =
∑ 𝑥𝑖μ(𝑥𝑖)𝑅

𝑖=1 +∑ 𝑥𝑖μ(𝑥𝑖)𝑁
𝑖=𝑅+1

∑ μ(𝑥𝑖)𝑅
𝑖=1 +∑ μ(𝑥𝑖)𝑁

𝑖=𝑅+1

       (24) 

Yc = [𝑦𝑙 , 𝑦𝑟] = 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐶̄)      (25) 

Where 𝑦𝑙 and 𝑦𝑟 are endpoints of the type-reduced set. 

d. Defuzzification 

Defuzzification is the final stage in a fuzzy inference system, where a crisp output is derived by averaging 

the bounds of the type-reduced set, typically obtained via centroid-based methods. 

𝑦 =
𝑦𝐿+𝑦𝑟

2
         (26) 

 

 
Fig.8 Architecture of IT2FLC. 

 

4. Simulation and discussion 

The implementation of ANFIS, and IT2FL PV MPPT has been achieved on the dataset of the PV MPPT 

https://www.zdgx-pcsee-02588013.com/
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based on P&O. The figures below show The I–V and P–V curves of the simulated MATLAB model of the 

PV module at 25°C and different solar irradiance, and the Simulink simulation of the system. 

 

 
Fig. 9. The I–V and P–V curves of the simulated MATLAB model 

 

 
Fig. 10. Simulink of the proposed system 

 

The ANFIS training using subtractive clustering partition has generated one cluster for each input, as is 

shown on Fig. 11. 
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Fig. 11. Input Membership functions 

 

The ANFIS-SC parameters are presented below: 

 

Table 2. ANFIS-SC parameters based on subtractive clustering 

Range of influence 0.5 

Squash factor 1.25 

Accept ratio 0.5 

Reject ratio 0.15 

 

The GWO parameters are below: 

-Dimension of the problem (Duty cycle): 1 

-Number of search agents (wolf population): 7 

-Iteration number: 100 

The Interval Type-2 Fuzzy Logic parameters are below: 

-Type reducer: Karnik-Mendel 

-Scale factor: 0.6 

- Lower lag: 0.4. 

 

Fig. 12 presents the IT2FL based PV MPPT controller membership functions according to the parameters 

above. 

 

https://www.zdgx-pcsee-02588013.com/
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Fig. 12. Membership functions of IT2FL-based MPPT controllers 

 

As shown in Figs. 13–18 and according to table 3, which presents the performance comparison results of 

the four MPPT controllers, the intelligent MPPT controllers—namely ANFIS-SC, GWO, and IT2FL—

outperform the conventional P&O MPPT controller. Among the intelligent MPPT controllers, none 

completely dominates all performance criteria. However, it can be concluded that the IT2FL-based MPPT 

controller performs the best, as the GWO-based MPPT controller exhibits a slight dip in performance 

between 0.02s and 0.1s. 

Under load conditions, the intelligent MPPT controllers surpass the P&O MPPT, though the GWO-based 

MPPT shows some power oscillations. 

Figs. 19–20 illustrate the impact of wolf population size on the performance of the GWO-based MPPT. A 

wolf population of 7 enables the GWO algorithm to deliver maximum power compared to populations of 6 

and 8. 

 

 
Fig. 13. Comparative analysis of PV voltage output using P&O, ANFIS-SC, GWO, and IT2FL -based 

MPPT controllers 
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Fig. 14. Comparative analysis of PV current output using P&O, ANFIS-SC, GWO, and IT2FL -based 

MPPT controllers 

 

 
Fig. 15. Comparative analysis of PV power output using P&O, ANFIS-SC, GWO, and IT2FL -based MPPT 

controllers 

 

 
Fig. 16. Zoom of comparative analysis of PV power output using P&O, ANFIS-SC, GWO, and IT2FL-

based MPPT controllers 

https://www.zdgx-pcsee-02588013.com/
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Fig. 17. Comparative analysis of Load power using P&O, ANFIS-SC, GWO, and IT2FL-based MPPT 

controllers 

 

 
Fig. 18. Zoom of comparative analysis of Load power using P&O, ANFIS-SC, GWO, and IT2FL-based 

MPPT controllers 

 

 
Fig. 19. Impact of wolf population size on GWO-Based MPPT performance: PV power output comparison 

 



 

720 

 

Bennaceur, et.al, 2025                                                                                                                             PCSEE 

 
Fig. 20. Impact of wolf population size on GWO-Based MPPT performance: Load power comparison 

 

Table 3. Comparative performance evaluation of four PV MPPT controllers 

 P&O ANFIS-SC GWO IT2FL 

RiseTime 0.0141 0.0250 0.0165 0.0179 

SettlingMin 148.8540 180.0000 180.0011 180.0026 

SettlingMax 200.1382 196.5045 200.1372 200.1368 

Overshoot 0 0 0.0686 0.0684 

Undershoot 0 0 0 0 

Peak 200.1382 196.5045 200.1372 200.1368 

PeakTime 0.0190 0.0820 0.0245 0.0293 

 

5. Conclusion 

The comparative analysis underscores the limitations of classical P&O in dynamic environments and 

highlights the superiority of intelligent MPPT techniques. While ANFIS-SC excels in adaptability and 

learning, GWO offers rapid convergence (with minor oscillations), and IT2FL provides the highest stability 

under uncertainty. For optimal PV system performance, IT2FL is the most reliable choice, though GWO 

remains competitive when fine-tuned (e.g., wolf population optimization). Future work could explore 

hybrid approaches (e.g., ANFIS-GWO) to further enhance tracking precision and robustness. 
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